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Abstract

This paper surveys previous work on combining planning
techniques with expressive representations of knowledge in
description logics to reason about tasks, plans, and goals.
Description logics can reason about the logical definition of a
class and automatically infer class-subclass subsumption
relations as well as classify instances into classes based on their
definitions. Descriptions of actions, plans and goals can be
exploited during plan generation, plan recognition, or plan
evaluation. These techniques should be of interest to planning
practitioners working on knowledge-rich application domains.
Another emerging use of these techniques is the semantic web,
where current ontology languages based on description logics
need to be extended to reason about goals and capabilities for
web services and agents.

1 Introduction

Most real-world planning applications are naturally knowledge rich. Yet, planning
research to date has concentrated on languages and algorithms to represent and search
through decision spaces in order to generate feasible plans. Typical planning systems use
very small amounts of knowledge, and the representations of the domain or the planning
tasks are typically not very expressive. A challenging area of future research is the
integration of existing planning algorithms with rich representations of domain-specific
knowledge about planning tasks and objectives, actions and events as part of a plan, and
the complex relations among them. The combination of these techniques will result in
planning systems that will be better equipped to address more effectively the needs of
real-world planning applications.

Recent interest in web services and their composition to create distributed
applications also bring this topic to the forefront of research. Planning approaches have



been used as a framework for web service specification and composition [Kim et al 04;
McDermott 02, Ankolenkar et al 02]. The richer the representation of the capabilities of
web services and of their relations to other services, the more automation can be brought
to bear for web service composition. Rich representations of goals and capabilities would
also support other purposes such as matching of requests to existing services. The
semantic web vision [Berners-Lee et al 01] brings a renewed interest in reasoning about
tasks, goals, and plans using rich domain descriptions.

This paper gives an overview of different uses of expressive representations of planning
knowledge, focusing on description logics as expressive knowledge representation
frameworks with well-understood reasoning complexity and tractability. Although these
uses have been investigated in the description logics arena, they have not been
incorporated within state of the art planning algorithms. The paper discusses four main
uses of description logic to represent planning knowledge, specifically:

1. object taxonomies to reason about the planning state expressed with
descriptions of the different types objects in the domain

2. action taxonomies to reason about action types at different levels of
abstraction

3. plan taxonomies to reason about plan subsumption of partially ordered
plans

4. goal taxonomies to reason with expressive representation of goals and
their parameters.

The paper draws examples from three implemented systems. The systems are
only partially described here, the reader is referred to the citations for more details on the
approaches used. One of these systems is CLASP [Devanbu and Litman 96], a system
developed to reason about action taxonomies and action networks. CLASP was applied to
a telephony domain and was integrated with the LASSIE software information system
[Devanbu et al 91]. We also draw examples from SUDO-PLANNER [Wellman 88],
which exploited plan subsumption to control the search during plan generation. It was
designed to reason about tradeoffs in decision making under uncertainty, and was
developed for medical applications. SUDO-PLANNER had other features not described
here, including uncertainty reasoning and partial goal satisfaction, policy constraints to
relate actions to external events, conditional effects, and qualitative probabilistic
networks. We also use examples from EXPECT [Gil 94; Swartout and Gil 95; Gil and
Melz 96; Blythe et al 01], an architecture for problem solving and reasoning that supports
interactive acquisition of knowledge. EXPECT exploits structured representation of
goals and capabilities to support sophisticated matching during problem solving as well
as facilitating the generation of natural language paraphrases of problem solving
knowledge. The same goal and capability representations were used in the
PHOSPHORUS agent matchmaker used in a multi-agent system for an office
environment [Gil and Ramachandran 01; Chalupsky et al 02].

The paper begins with a brief introduction to description logics. It then describes
how to use description logics to reason about objecs, actions, plans, and goals. We use
examples taken from three implemented systems and also summarize other related



research along the way that often integrates this work with other techniques in knowledge
representation, planning, and natural language.

2 A Brief Introduction to Description Logics

The section gives a short and informal introduction to description logics. See
[Brachman and Levesque 04; Baader et al 03a] or dl.kr.org for a comprehensive
introduction and overview of description logics, their formal underpinnings, existing
implementations, and applications. The role of description logics in the semantic web
and their use in web ontology language standards are discussed in [Antoniou and van
Harmelen 04; Horrocks et al 03; Baader et al 03b].

Description logics are an extension of frame-based systems that can express
definitions of classes and relations. Description logic languages differ in expressivity,
which determines the computational complexity of the reasoning algorithms for each
language. Class definitions can include disjunction and negation as well as constraints
on the relations to other classes. A relation between a class (its domain) and another
class (its range) can be constrained in cardinality and type. Relations can also be given
definitions and therefore have subclasses as well. Class partitions can be defined by
specifying a set of subclasses that represent the partitions, and can be exhaustive if all
instances of the class belong to some partition and disjoint if there is no overlap in the
subclasses. A class can be denoted as a primitive class and not given a definition, and in
that case their subclasses and instances must be explicitly indicated.

Description logic systems use these definitions to automatically organize class
descriptions in a taxonomic hierarchy and automatically classify instances into classes
whose definitions are satisfied by the features of the instance. Specifically, description
logic reasoners provide two key capabilities: 1) class subsumption, where a class C1
subsumes another class C2 if its definition includes a superset of the instances included in
C2; 2) instance recognition, where an instance belongs to a class if the instance’s features
(roles and role values) satisfy the definition of the class. Description logic systems also
have mechanisms to detect inconsistent definitions and support reasoning through
inheritance and default values. Because of multiple inheritance, the taxonomic hierarchy
is often a lattice.



(defconcept Activity

:is (:and Thing
(:exactly 1 start-time)
(:exactly 1 day)
(:exactly 1 month)
(:exactly 1 year))
:constraints (:some duration)

:exhaustive-partition Work-Activity Non-Work-Activity)

(defconcept Work-activity
:is (:and Activity
(:the location Work-location)))

(defconcept Conference-room
:is-primitive (one-of 9cr 1llcr 12cr 4cr 10cr)

(defconcept Office
tis-primitive (one-of 901 919 949 934 950 913)
(defconcept Work-location
:is (:or Conference-room Office))

(defconcept Meeting
:is (:and Thing
(:exactly 1
(:exactly 1
rexactly 1 month)
rexactly 1 year)
rat-least 2 meeting-participant))
(:and (:some topic)
(:some project)
(:at-most 1 duration)
(:at-most 1 location)))

start-time)
day)

(

:constraints

(defrelation presentation
:is (:and (:the domain Meeting)
(:the range Document)))
(defconcept Document :is-primitive thing)
(defrelation owner
:is (:and (:the domain thing)
(:the range Person)))

(defrelation presenter
:is (:composite-relation presentation owner))

(defrelation meeting-participant

:is (:or (:and (:the domain Meeting)
(:the range Person))
presenter))

(instance mtg7986
:start-time 1500
:month December
:project Trellis
:presentation Trellis-kickoff-slides.pdf
:meeting-participant Diaz

:location 9cr)

:day 12 :year 2003

(instance Trellis-kickoff-slides.pdf Document
:owner Smith)

(instance mtg8897 Work-activity :location Street)

(instance ?TM
(:and Meeting
(:the project Trellis))))

(query ?TM

Figure 1. Some descriptions to represent meetings in a description logic.



To illustrate the use of these different kinds of reasoning, we use a simple example that
shows how to represent office meetings and then discuss how a meeting planner could
exploit these representations. Figure 1 shows a representation, not complete for lack of
space, of meetings and other events in a description logic. Classes are capitalized, and
relations are shown in lower case. An activity is defined as any thing that has a start
time, a day, a month, and a year. A work activity is defined as an activity that has a work
location, which can be one of several given meeting rooms or an office. Anything that
has a start time, a day, a month, a year, and two participants is considered to be meeting.
Conversely, any meeting must have those five features. Meetings can also have a project,
a presentation, a duration, and a location, but these features are not necessary nor
sufficient for something to be a meeting. Relations for presentations and meeting
participants and presenters are also shown. Mtg79886 is specified as an instance, and
several roles and their ranges are given but notice that no parent class is specified.

Given these definitions, a description logic system would make the following
inferences which are in some cases quite subtle in the way the exploit the definitions.
The class meeting is a subclass of activity, given that the definition of meeting is
subsumed by the definition of activity since has a start time, day, month, and year. A
meeting may have a presentation. The relation presenter is a subclass of the relation
meeting-participant. Smith is a presenter in mtg79886 and therefore is a meeting-
participant. Mtg7986 is an instance of the class meeting, given that mtg7986 complies
with the definition of Meeting because it has a start time, day month, year, and two
meeting participants.

Knowledge bases developed with description logic are more modular and
maintainable, since the reasoners are able to derive the taxonomy automatically and
therefore the descriptions of classes and instances do not need to take into account all
other definitions in the knowledge base. Note that by not stating explicitly the class of
the instance mtg7986 we can decouple the definitions of the classes and the instances and
therefore develop a more modular and maintainable knowledge base.

Description logic systems also facilitate the development of knowledge bases by
detecting inconsistent descriptions. The reasoners would detect that mtg8897 is not
consistent, since a work activity cannot have a location that is not a conference room or
an office. Another important capability of description logics is to support queries that in
effect form new classes on the fly. The figure shows a query for any instances that are
meetings of the Trellis project, which will return mtg7986 and any others that satisfy that
definition.

Some well-known description logic systems include CLASSIC [Brachman et al
91] (used in CLASP), NIKL [Moser 83] (used by SUDO-PLANNER), LOOM
[MacGregor 91] (used by EXPECT), FaCT [Horrocks 98], and RACER [Haarslev and
Moller 01].

Ontology languages for the semantic web based on description logics are now de
facto W3C standards. OWL, the Web Ontology Language [McGuinness and van
Harmelen 04], includes in its specification three flavors of increasing expressivity and
complexity. OWL-DL is a description logic built as an extension of (a subset of) RDF
[Brickley and Guha 04] with a reasonable level of expressivity and at the same time there



already are highly optimized implemented system for its language. OWL-Lite is a
simpler subset of OWL-DL. OWL-Full extends OWL-DL with additional constructs
extending on RDF as well. OWL and its predecessors have made description logic
systems widely accessible and wused at unprecedented levels. See
http://www.w3.0rg/2001/sw/WebOnt/ for good introductory materials, methodology for
practical use, and pointers to implemented tools such as editors, parsers, and reasoners.

The following sections illustrate some of the uses of description logics in the
context of diverse planning tasks and application domains.

3 Reasoning about Object Taxonomies

Planning systems often reason about how actions transform an initial state of the world
into a final state, changing the domain objects as actions are executed. State information
is often expressed as a set of ground predicates, in some cases organizing objects into
small type hierarchies. Expressive representations and reasoners can be used in planning
systems to define complex domain terms and objects. For example, a meeting planner
could reason about events and differentiate meetings from other activities, and pose
dynamically formulated queries about new kinds of meetings with different combinations
of features, such as meetings relevant to specific projects using the definitions shown in
Figure 1. These descriptions can also be used to reason about actions based on types of
objects. For example, a meeting planner could use different criteria to handle meetings
that are relevant to multiple projects.

CLASP, SUDO-PLANNER, and EXPECT all represented the objects in their
respective domains in description logics, and as a result they were able to represent
actions, plans, and goals in terms of object classes and the kinds of reasoning that can be
supported with them. State-of-the-art planning algorithms could be extended with state
descriptions expressed in description logics, and support precondition matching through
description logic reasoners.

The TINO mobile robot uses description logic to generate high-level plans [De
Giacomo et al 96]. The representation of the domain includes static axioms, used to
represent background knowledge that does not change as actions are executed, and
dynamic axioms that represent the changes caused by the actions. Conditional plans are
generated, and during execution different branches can be selected based on sensory
feedback.

The RAT planning framework [Heinsohn et al 92], used to design multimodal
presentations in WIP [Wahlster et al 93], represents preconditions and effects using a
description logic restricted to conjunctions of feature restrictions and equality. An action
can be applied to a state if the precondition expression subsumes the current world state.
The expression in the effects results in the assignment of the values or restrictions in the
features mentioned. RAT was using, the RAT planning framework.

[Artale and Franconi 98] define a temporal description logic that incorporates
Allen’s interval relations [Allen 84] and that can be used to specify descriptions of
actions and plans in terms of temporal relations to world states and other actions.



4 Reasoning about Action Taxonomies

Actions can be described at many levels of abstraction. For example, driving and
flying are both moving actions with specific means of locomotion. Walking is also a
moving action that does not require a transportation vehicle. If we describe moving
actions in terms of their properties and constraints, they can be organized in a taxonomy
and enable more efficient reasoning about actions through abstract classes. Simple action
taxonomies that do not utilize description logics have been used for case-based planning
[Alterman 86], plan generation [Tenenberg 89], and plan recognition [Kautz 91]. The
advantage of using description logics is that the taxonomy can be constructed
automatically by the system based on the class descriptions provided, instead of being
built by hand which is more time consuming and prone to error. This can make the
taxonomies and the approaches more scalable to problems with large numbers of
complex actions.

We illustrate this idea with CLASP. CLASP used a STRIPS-like representation
[Fikes and Nilsson 71] of actions in the plan, and assumed a propositional representation
of planning problems with conjunctive expressions of preconditions and states. Figure 2
shows the core definition of actions and states, as well as some example actions and
states in the telephony switching domain. The core definition of an action shows that it
has actors, preconditions, and add and delete lists. Domain-specific types of states and
actions are described using the corresponding core definitions. A system action is
defined as any action performed by the system (not by a user). A connect dialtone action
is defined as an action performed by a system that provides a dialtone when the phone is
off the hook and idle. Specific states and actions are created as instances of the classes
defined in these taxonomies. The initial and goal states are defined as instances. Specific
actions are defined as instances as well, for example connect-dialtone-on-ul is performed
by a switching system and requires the user to be idle.

CLASP used CLASSIC’s classifier to reason about action taxonomies. For
example, it would infer that Connect-Dialtone-Act is a subclass of System-Act based on
their definitions. It would also infer that connect-dialtone-on-ul is a System-Act given
that a switching system is a kind of system and is the agent of that action.

In SUDO-PLANNER, actions were represented as concepts, with action
parameters as concept roles, and action constraints represented as role restrictions. A
taxonomy of action types enabled SUDO-PLANNER to exploit inheritance and
classification. Figure 3 shows several examples of how actions are described in SUDO-
PLANNER. Given these descriptions, the system deduces that open-lung-biopsy is a
surgery through subsumption reasoning.

Action taxonomies are particularly useful to organize plan taxonomies, a topic
discussed in the next section.



(DEFINE-CONCEPT Action
(PRIMITIVE
(AND Classic-Thing
(AT-LEAST 1 Actor)
(ALL ACTOR Agent)
(EXACTLY 1 PRECONDITION)
(ALL PRECONDITION State)
(EXACTLY 1 ADD-LIST)
(ALL ADD-LIST State)
(EXACTLY 1 DELETE-LIST)
(ALL DELETE-LIST State)
(EXACTLY 1 GOAL)
(ALL GOAL STATE))))

(DEFINE-CONCEPT State
(PRIMITIVE Classic-Thing))

(DEFINE-CONCEPT System-Act
(AND Action
(ALL ACTOR System-Agent)))

(DEFINE-CONCEPT Connect-Dialtone-Act
(AND System-Act
(ALL PRECONDITION
(AND Off-Hook-State
Idle-State))
(A1l Add-LIST Dialtone-State)
(ALL DELETE-LIST Idle-State
(ALL GOAL
(AND Off-Hook-State
Dialtone-State))))

(DEFINE-CONCEPT Callee-Off-Hook-State
(PRIMITIVE State))

(DEFINE-CONCEPT Callee-On-Hook-State
(PRIMITIVE State))

(DEFINE-CONCEPT Callee-Off-Caller-On-State
(AND Callee-Off-Hook-State Caller-On-Hook-State))

(CREATE-IND state-ulon-u2o0ff
(AND state-Ulon State-U20ff))

(CREATE-IND connect-dialtone-on-ul
(AND Connect-Dialtone-Act
(FILLS ACTOR switching-system)
(FILLS PRECONDITION state-uloff-idle)))

Figure 2. Core definitions and examples of actions and states in CLASP (from [Devanbu and
Litman 96]).




(defconcept surgery
:is (:and action
(:the route invasive-path-into-body)))

(defconcept biopsy
ris-primitive action ...))

(defconcept open-lung-biopsy
:is (:and biopsy

(:the route open-lung-path)))

(defconcept open-lung-path
:is (:and invasive-path-into-body ...))

Figure 3. Examples of action descriptions in SUDO-PLANNER (from [Wellman 88]).

5 Reasoning about Plan Taxonomies

Plan taxonomies can be built in various ways. This section illustrates how plan
taxonomies can be built based on the actions that compose the plan, based on the initial
conditions and goals achieved, based on how they change the initial state over time.
Because the actions in the plan can be related through complex constructs, reasoning
about plan subsumption is often done by extending a description logic with additional
mechanisms.

Plan taxonomies have a variety of uses in planning. Plan taxonomies can support
several aspects of reasoning about plans, including organization of plan classes, retrieval
of plan types and instances with description-based queries, and validation of plans based
on descriptions of valid classes of plans. This should be very useful in applications where
large amounts of complex plan instances need to be managed. For example, planning
systems could retrieve relevant plans based on description-based queries that refer to
types of features of the current planning problem.

One use of plan taxonomies is to assist during plan generation. Some plans can
be described as a network of actions, and Hierarchical Task Network (HTN) planning
approaches use these networks to generate plans [Ghallab et al 04]. Plan taxonomies
could help organize plans based on the types of actions used within these decompositions.
Other planning approaches use plan space search by incrementally adding new actions to
the plan [Weld 99]. Reasoning about how two plans relate to one another is important in
order to ensure that any two areas of the solution space are searched only once. This
results in more efficient search. It is also important for planning algorithms to exhibit a
property known as systematicity, which means that they can map out in an organized,
comprehensive, and non-overlapping way the search space that they explore. Typically in
planning algorithms two plans are considered to be related based on the specific steps and
links that they include. These algorithms could use plan taxonomies to relate plans in
more sophisticated ways, exploiting different levels of abstraction of actions and plans as
well as definitions of aggregate steps and domain knowledge.



CLASP used plan taxonomies to organize, validate, and retrieve plans in a library.
Plans are defined in CLASP's language, an extension to CLASSIC. Plans are described
as networks of actions that achieve a goal from a given initial state. The action networks,
denoted as PLAN-EXPRESSION, are partially ordered plans that include iteration and
branching. A PLAN-EXPRESSION can be described with the constructs SEQUENCE,
LOOP, REPEAT, TEST (conditional branching), OR (disjunctive branching), and
SUBPLAN. The SUBPLAN construct supports modular definitions of plans through
definitions of meaningful sub-networks. Figure 4 shows the core definition of a plan, as
well as some domain plans to illustrate these constructs. Subtypes of the class plan can
be defined to create a taxonomy of plan types. For example, a plan for POTS (Plain Old
Telephone Service) can be defined as one where a caller picks up the phone and dials, if
the callee's phone is off hook the caller gets a busy signal and hangs up otherwise the call
proceeds. Notice that Originate-And-Dial-Plan is a subplan that is defined separately and
its plan expression is inserted in the appropriate node of the POTS plan expression.
Specific plans are called scenarios, and they reflect different linearized sequences of
actions that can be executed in the world. Figure 4 also shows a scenario where the caller
picks up the phone, gets a dialtone, dials and gets a busy signal, and hangs up causing the
system to disconnect.

CLASP supported subsumption and classification of plans and scenarios by
extending the functions provided in CLASSIC for concepts and instances. A plan
description A subsumes a plan description B if the initial state and goal state of A
subsume the initial and goal states of B, and if the plan expression of A subsumes the
plan expression of B. The subsumption of plan expressions was defined by considering
action networks as an extension to deterministic finite automata (DFA) where the
transitions are CLASSIC subsumption checks. The plan expression EA of a plan class A
subsumes the plan expression EB of a plan class B if the languages accepted by their
corresponding DFAs are subsumed, i.e., DEA's language is a subset of DEB's language.
A scenario is an instance of a plan class if the action network of the plan expression of
the scenario is accepted by the DFA defined by the plan expression of the plan class.

MRL also used description logics to query and index plan libraries [Koehler 96].
MRL is a case-based planning system that uses conjunctive expressions of preconditions
and goals to be achieved by a plan, and retrieves relevant plans to a new case by querying
the plan library about plans whose preconditions and/or goals subsume the new case.
Plans in the library are indexed by features that reflect the main properties of the
problem. A plan in the library is considered more specific than another if its index is
more specific.
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(DEFINE-PLAN Plan
(PRIMITIVE
(AND Clasp-Thing
(EXACTLY 1 INITIAL)
(ALL INITIAL State)
(EXACTLY 1 GOAL)
(ALL GOAL State)
(EXACTLY 1 PLAN-EXPRESSION)
(ALL PLAN-EXPRESSION
(LOOP Action)))))

(DEFINE-PLAN Pots-Plan
(AND Plan
(ALL PLAN-EXPRESSION
(SEQUENCE
(SUBPLAN
Originate-And-Dial-Plan)
(TEST
(Callee-On-Hook-State
(SUBPLAN Terminate-Plan))
(Callee-Off-Hook-State
(SEQUENCE
Non-Terminate-Act
Caller-On-Hook-Act
Disconnect Act)))))))

(DEFINE-PLAN Originate-And-Dial-Plan
(AND Plan
(ALL PLAN-EXPRESSION
(SEQUENCE Caller-Off-Hook-Act
Connect-Dialtone-Act
Dial-Digits-Act))))

(CREATE SCENARIO
pots-busy-scenario
(AND Plan

(FILLS INITIAL state-ulon-u20ff)

(FILLS GOAL state-ulon)

(FILLS PLAN-EXPRESSION
(caller-off-hook-ul
connect-dialtone-on-ul
dial-digits-ul-to-u2
non-terminate-on-u2
caller-on-hook-ul
disconnect-ul))))

Figure 4. Core definition and examples of CLASP plans (from [Devanbu and Litman 96]).

SUDO-PLANNER used plan taxonomies to guide plan generation using plan
space search [Weld 99]. It represented plans as partially ordered sets of actions, and used
plan subsumption to detect nodes in the search that are redundant with others and
therefore need to be eliminated. Plan subsumption was evaluated through bipartite graph
matching. Figure 5 shows some examples of plans shown as sequences of three steps
(e.g., Pis[al a2 a3]). To simplify things, we will denote actions by letters with subscripts
where subsumers have a lower number (eg. al subsumes a5, b2 subsumes b3). The lines
show subsumption of individual steps (e.g., al subsumes a3, a4 and a6.). A plan
subsumes another plan if their steps have an exclusive pairwise (isomorphic)
subsumption relation in the order in which they appear in each plan. The search algorithm
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used plan subsumption to eliminate redundant nodes from the search space. A node is
eliminated if its plan is subsumed (dominated) by another node. New search nodes are
created by adding constraints to a parent node, either by making a step more specific
(according to the action taxonomy) or by eliminating a step. We will denote a partial plan
(including the null plan) as A*. For example, a node with a plan A* al A* could be
expanded to a plan a2 A* or A* al b5 A*. Figure 6 illustrates how redundant paths are
handled. In this example, a2 b7 A* is subsumed by al b5 A*, and thus eliminated.

Plan taxonomies can also be defined using sets of constraints, including temporal
constraints. T-REX [Weida and Litman 92] exploits action taxonomies and temporal
networks of actions in order to compute plan subsumption. T-REX presents an approach
to plan recognition where after observation of a new action instance the entire set of
hypothesis is reworked as a result of the classification of the instance.

SN
Q S
a3 a4 a6 a2 a3 a6

lai subsumes aj when i<j|

Figure 5. Plan subsumption in SUDO-PLANNER can be viewed as bipartite graph matching.
Plan P subsumes plan Q since al subsumes a3, a2 subsumes a4, and a5 subsumes a6. Plan R
does not subsume plan S because there is not a one-to-one correspondence based on subsumption
for each of the three actions in the plans.

A* a1 A*
a2 A* A* a1 b5 A*
A* = {ai...aj} | |
ai subsumes aj when i<j a2 b7 A* X al b5 A*

Figure 6. The search for a plan in SUDO-PLANNER is guided by a strategy called dominance
proving. Any search node whose plan is dominated (i.e., subsumed) by a plan in another node is
eliminated. Here, [a2 b7 A*] is subsumed by [al bS A*], so its node is eliminated from the
search.
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6 Reasoning about Goal Taxonomies

An important issue in reasoning about plans, processes, and activities is the
description of the desired goals (or objectives or tasks) as well as which actions (or
procedures, or agents) have the capability to achieve them. In planning systems, goals
and capabilities are typically described as a predicate with a name and several arguments
and are matched through straightforward variable unification. Goal taxonomies could be
used to support more flexible matching approaches exploiting subsumption to relate
otherwise disparate descriptions. This is especially important given the recent emphasis
on distributed approaches, where planners, agents, or services need a certain goal
accomplished by others, but each may have their own way to describe them.

EXPECT uses goal taxonomies for matching. A theme of the work on EXPECT
is that the representations in a knowledge base should be understandable to end users,
since a user needs to understand how a system is solving a problem before embarking on
adding new knowledge. As a result, EXPECT’s representation of goals and capabilities
is inspired in earlier natural language work [Swartout et al 91; Swartout and Moore 93].
They are represented as verb clauses using a case-grammar formalism [Fillmore 68].
Each capability consists of a verb, that specifies what is to be done, and a number of
cases that specify the roles of the objects. Each case is effectively a parameter, and is
specified with a role name and a type using terms that are defined in a domain ontology.
A typical role is a direct object (denoted as OBJ), other role names are often prepositions.
Figure 7 shows some examples of how goals and capabilities are represented in
EXPECT. With the definitions given for move, move cargo by air, and airlift, the system
determines that move cargo by air and airlift are equivalent. It will also infer that mv23
is an airlift, and the query for airlift instances will return mv23.

An important feature is the declarative representation of qualification parameters (in
addition to data passing parameters) for goals and capabilities. Qualification parameters
express what needs to be done with data parameters in an explicit way but are not strictly
necessary to carry out operations on the data parameters. Both data and qualification
parameters may be single instances or concepts, or sets of instances or concepts that may
be intensionally or extensionally specified. For example a goal to compute the factorial
of a number would be represented with a qualification parameter “factorial” and a data
parameter that would be the number. The parameters in goals and capabilities may be of
the following types:

* a specific instance, ex: the USS Coronado, represented as (the-instance USS-

Coronado)

* an abstract concept to specify a qualification parameter, ex: air superiority,
represented as (the-concept air-superiority)

* an instance type, ex: barge, represented as (barge)

* a concept type, which includes all its subtypes, ex: command-and-control-structure,
represented as (subtype-of command-and-control-structure)

* a set of instances, intensionally or extensionally specified, ex: Mexico and Canada,
represented as (the-set Mexico Canada)
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* a set of concepts, intensionally or extensionally specified, ex: types of cargo can be
referred to as (the-set Breakbulk ContainerCargo) or intensionally as (set-of (subtype-
of Cargo)

(defconcept Move
:is (:and Action
(:some obj Cargo)
(:some with Vehicle)))

(defconcept Vehicle
:is-primitive (:partition Aircraft Ship))

(defconcept Move-cargo-by-air
:is (:and Move
(:some obj Cargo)
(:all with Aircraft)))

(defconcept Airlift
:is (:and Move (:all with Aircraft))

(defconcept Cargo
:is-primitive thing)

(defconcept Breakbulk
is-primitive Cargo)

(defconcept ContainerCargo
:is-primitive Cargo)

(instance mv23 Move
(obj container23)
(with C-140)

(on 7-25-04)

(query ?A (instance ?A Airlift))

(defconcept AssignBB&C
:is (:and Assign

(:the obj (:and Extensional-Concept-Set
(:filled-by Concept-name Breakbulk)
(:filled-by Concept-name Container)

(:the to (:and ship Extensional-instance-set
(:filled-by Instance-name shl)
(:filled-by Instance-name sh2)
(:filled-by Instance-name sh3)))

(defconcept z98

:is (:and Assign
(:the obj (:and Cargo Intensional-Concept-Set))
(:the to (:and ship Intensional-Concept))))

Figure 7. Examples of goal and capability representations in EXPECT. The last two
concepts are automatically created by the matcher to represent a capability and for a posted goal
respectively and related through subsumption.

A posted goal or objective during problem solving could be to allocate cargo to a
set of ships, represented as:

(assign (OBJ (the-set Breakbulk ContainerCargo))) (TO (the-set shl sh2 sh3)))

A method with the following capability could be applied to achieve this objective:
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(assign (OBJ (set-of (subtype-of Cargo))) (TO (ship)))

This is done by a matcher, which automatically translates goals and capabilities
into LOOM definitions following an algorithm described in [Gil and Gonzalez 96]. The
bottom of Figure 8 shows the concepts that would be created by the system to reflect the
capability and goal just discussed. LOOM's classifier then about these definitions and
places them in a lattice, where more general definitions subsume more specific ones. An
example is shown in Figure 8. Notice that subsumption reasoning uses the definitions of
the domain terms (e.g., definitions of vehicles, aircrafts, and trucks) in order to build the
lattice. As a result, the capability to "~move cargo with a vehicle" will subsume one to
““move cargo with an aircraft", because according to the domain ontologies vehicle
subsumes aircraft. The capabilities are automatically organized according to their
definitions, and they can be compared based on their place in the lattice.

0OBJ

— @b

ethod capability:
(move
(OBJ (inst-of cargo))
(WITH (inst-of aircraft)))

Goal:
(move

(OBJ (inst-of cargo))

(WITH C-140))

ITH

Figure 8. Goal matching in EXPECT using the LOOM classifier.

When a goal arises during problem solving, subsumption-based matching can
help find suitable capabilities, but in some cases no subsuming capability may be
available. In these cases it may be possible to fulfill the goal by decomposing it
expressing it in different terms. This allows a more flexible matching than is possible if
one required an exact match for goals and methods. EXPECT supports several types of
reformulations:

* A covering reformulation, where it transforms a goal into a set of goals that
partition the original goal based on subclass partitions. If all the goals in the set
are achieved, the intent of the original goal is achieved. For example, suppose a
goal of moving cargo has been posted, but no applicable methods have been
found. Suppose that cargo is partitioned into several subcategories such as
breakbulk, container, etc. and that there are methods to move each of these

15



categories, the original goal can then be reformulated into several new
conjunctive goals to move each type of cargo in the partition.

* A set reformulation is like a covering reformulation except that it involves a goal
over a set of objects that is reformulated into a set of goals over individual
objects.

* An input reformulation is somewhat similar to the support that some languages
provide for polymorphic operators. This kind of reformulation occurs when a
goal is specified with a general parameter and no single method is available at a
sufficiently general level to handle the parameter. In that case, the goal can be
reformulated into disjunctive subgoals based on the subtypes of the parameter
given in the ontology.

These structured representations of goals and capabilities have been used in three
different and related contexts that require reasoning about goals: problem-solving goals,
planning objectives, and agent capabilities.

Problem-solving knowledge that can be represented in EXPECT consists of set of
methods. Each method has a capability that declares what task can be achieved by the
method, a body that describes how the capability is achieved and a return type that
characterizes what the method produces. The method body is written in a programming
language that includes basic constructs such as a conditional test and can also include
other goals. These goals may be matched by the capabilities of other methods, in which
case they will be used when the method is applied, resulting in a tree structure of
methods. EXPECT method capability descriptions for methods are specified in a similar
way to goals, except that variables may appear in the capability descriptions. These are
bound when the capability descriptions are matched with goals. Because it uses
structured representations of method capabilities is, EXPECT can reason about how
different methods relate to each other. This is useful for organizing method libraries as
well as to support the acquisition of new problem-solving methods. These
representations also support natural language paraphrasing, which is useful to develop
adequate knowledge acquisition tools accessible to end users with no logic or
programming background.

A second use of this kind of structure in the goal representation is to describe
steps or tasks in plans that accomplish those goals. Understanding tasks and reasoning
about types of tasks can be useful to express concisely properties of those types of tasks,
such as their duration or their cost. For example, INSPECT [Valente et al 99] is a
knowledge-based system for plan evaluation and critiquing built with EXPECT that
analyzes a manually created air campaign plan and checks for commonly occurring plan
flaws, including incompleteness, problems with plan structure, and unfeasibility due to
lack of resources. Given a plan as a set of tasks and objectives, it would point out, for
example, that if one of the objectives in the plan is to gain air superiority over a certain
area then there is a requirement for special facilities for storing special fuel that is
currently not taken into account. This was done by reasoning about the kinds of
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objectives (goals) in the plan and their requirements based on their type and expressed
through the goal taxonomy.

A third use of this kind of structured representations of goals is agent
matchmaking. This was used in the PHOSPHORUS system within the Electric Elves
architecture [Gil and Ramachandran 01; Chalupsky et al 02]. Multi-agent architectures
typically offer matchmaking services that an agent can query to find what other agents
can perform a given task. For example, a route planning agent may invoke threat
detection agents in order to make a safe choice among all possible routes. Typically,
simple string matching suffices since the agent communities are relatively small and the
agents that need to issue a request can be told beforehand what other agents are available
and how they have to be invoked. In addition, most current multi-agent systems assume
that an agent can perform a few tasks (often just a single task), where the advertisements
and invocations of agents are negotiated in advance by the agent designers and thus can
be significantly simplified. In large and heterogeneous communities of agents, where the
agent that formulates the request would have no idea of whether and how another agent
has advertised relevant services, there is a need for more sophisticated matchmaking
mechanisms. The kinds of goal representations used in EXPECT provide a richer
language for advertising the capabilities of agents and would support more flexible
matching algorithms. In PHOSPHORUS, the agent capabilities are translated into
LOOM descriptions as described earlier. The matchmaker uses subsumption, reverse
subsumption, and several kinds of reformulations to find agents relevant to a request.

Other goal and action taxonomies have been developed based on linguistic
theories. [Di Eugenio and Webber 92] uses Jackendoff’s Conceptual Structure primitives
[Jackendoff 90] and maps them to class descriptions for example carry can be defined as
a kind of move with a physical means of taking an object. [Di Eugenio 94] augments
these descriptions with effects, conditions, and substeps, and found them effective to
interpret purpose clauses (eg. cut the square in half along the diagonal in order to make
two triangles) in natural language.

In summary, structured representations of goals and capabilities support complex
subsumption-based matchmaking and goal reformulations. An important benefit of goal
taxonomies is loosely coupling between goals and capabilities, i.e., between what is to be
accomplished and what are possible ways to get it accomplished. This is a key feature as
planning systems scale up and move towards distributed frameworks.

7 Summary and Future Prospects

Description logics have been used in several aspects of planning, including plan
analysis, plan generation, plan recognition, plan retrieval, and plan evaluation and
critiquing. Through expressive class descriptions and subsumption reasoning, description
logic systems can support sophisticated queries about planning knowledge based on
object taxonomies, action taxonomies, plan taxonomies, and goal taxonomies. These
taxonomies can be combined to create powerful abstractions of planning knowledge.
Description logic languages and systems can be extended to support temporal and control
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constructs that are central to planning problems. By incorporating these techniques,
state-of-the-art planning research would be better positioned to tackle the challenges of
reasoning about plans in knowledge-intensive environments in military planning,
enterprise and process modeling and management, scientific research, and space
operations. As the planning community continues to tackle more practical and ambitious
tasks, description logics are an important ingredient to scale up and provide the kinds of
knowledge representation and reasoning capabilities required by these applications.

Description logics are now central to the semantic web vision, since the adopted
web ontology language OWL is based on description logics. The combination of
description logics and planning techniques becomes directly relevant to reasoning about
web services and agents in terms of their goals and capabilities. A knowledge-rich web
with semantic underpinnings, where many simple tasks are automated and more complex
tasks can be automated through their composition, is unlikely to be a reality without
building on the techniques described in this paper.
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